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CONTRIBUTIONS

We propose a new continuous multiple deep encoder-decoder network, CDED-Net, to
extract the most useful features from images and learn completely from multiscale i image
inputs.

We introduce a boundary-emphasization augmentation method for making a high number
of object boundary patterns from each image in a training set. The novel augmentation
method enhances and boosts the segmentation performance of CDED-net.

In our CDED-net, instated of using constraint dilated convolution, we use different both of
strides and rates for each component network to capture contextual information at multiple
scales input.

We present a new Dicoss-loss function, which is a measure of overlap widely used to assess
segmentation performance of a network. The combination of the loss function and our
CDED-net results in a better performance.




METHODS

Boundary-Emphasization Data Augmentation
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METHODS

CONSECUTIVE DEEP ENCODER-

DECODER NETWORK

* The advantages and disadvantage of
DeeplLabV3+ inspired us to develop the proposed
network.

* The objective of this study is to build an
ensemble of deep encoder-decoder networks to
train and obtain rich contextual information for
the medical object segmentation task.

* To capture contextual information at multiple
scales, we used deep encoder-decoder
networks, namely DeepLab V3X
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FIGURE 3. The entire architecture of proposed CDED-net.
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FIGURE 4. The detail of the component proposed CDED-net with Deeplab
V3+ [11] as the backbone. 1) Entry flow. 2) Middle flow. 3) Exit flow.

We modified the convolution stride to adapt with the resolution of
dataset for extracting rich information features.




METHODS

DICOSS LOSS FUNCTION

A 2 Z‘- -‘i';'__j * Vij
Lo=—(1—-y)=* E Vij *log(yij) +y ,‘; N 2
” ijVij+ i Yij

* The loss simply verified each pixel individually, 3)

comparing the class predictions that are defined
as depth-wise pixel vector to the target vector. I

* The loss function's pixel-level assessment can be L"

problematic with multiple classes in an image, L

especially in medical images with limited surface
areaq.

* This biases the segmentation network towards
the background over the object. Combining it
with a dice loss function mitigates these issues.
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FIGURE 7. The effect of proposed loss function to network learning
progress on the same dataset by comparing to two fundamental loss
functions. a) Basic cross entropy loss function. b) Basic Dice loss function.
c) Proposed loss function.



DATASETS

+ CVC-ClinicDB [37] contains 612 images, where all images show at least one polyp. The segmentation labels
obtained from 31 colorectal video sequences were acquired from 23 patients.

+ CVC-ColonDB [46] ontains 379 frames from 15 different colonoscopy sequences, where each sequence shows
at least one polyp each.

« ETIS-LaribPolypDB [45] contains 196 images, where all images show at least one polyp.

« PH2 [38] contains 200 dermoscopic images with a resolution of 768 x 560 pixels that were acquired at
Dermatology Service of Hospital Pedro Hispano, Matosinhos, Portugal Mendonga with Tuebinger Mole Analyzer
system, this dataset includes 80 common nevus images, 80 atyp-ical nevus images and 40 melanoma image

+ ISBI 2016 [56] contains 900 training images with the ground truth provided by experts. The image sizes vary

from 1022 x 767 to 4288 x 2848 pixel. This dataset was provided at the 2016 International Symposium on
Biomedical Imaging (ISBI 2016).

« CHAOS 2019 [57] contains 980 liver CT images with re resolution is 512 x 512 pixel in DICOM format. This
dataset was provided at the IEEE International Symposium on Biomedical Imaging (ISBI) on April 8-11, 2019.




EXPERIMENTAL SETTINGS

Novel pair (Davis): There were no overlaps between the training and test datasets. Neither the training
compound nor the training protein appeared in the test set.

Novel compound (Davis): There were no intersections of compounds in the training set and compounds in the
test set.

Novel protein (Davis): There were no intersections of proteins in the training set and proteins in the test set.

Novel hard pair (Metz, KIBA): We removed interactions from the training dataset if either the protein sequence
or the compound had a similarity score exceeding the threshold 0.3

Cross-domain (Metz, CASF-2016): We removed interactions involving 56 proteins and 105 compounds with
similarities higher than 0.3 from the Metz dataset.

Enrichment factor analysis (BingdingDB, DUD_E diverse ): we removed interactions for two proteins and
compounds that appeared in both datasets (GCR HUMAN (P04150) and AKT1 HUMAN (P31749) and 102

compounds) from training set.




EXPERIMENTAL RESULTS

TABLE 1. Comparison of proposed method and three fully convolutional
neural networks in terms of mean pixel precision and recall for the
ETIS-Larib dataset [45].

TABLE 3. Comparison of proposed method on CVC-ClinicDB dataset [37].

Networks Accuracy  Specificity  Sensitivity Dice Precision

Networks Mean pixel precision  Mean pixel recall Liet al [24] 0.97 0.77 0,99 0.83 00,90
FCNMN-AlexNet [20] (.2789 (0.3554 Proposed 0.987 0.942 0.962 0.891 0.950
FCN-GooglLeNet [21] (.2583 0.3782
FCN-VGG [22] 0.7023 0.5420
Proposed 0.0203 0.9087 TABLE 4. Comparison of proposed method on PH? dataset [38].
Networks IoU Dice  Sensitivity  Specificity  Accuracy
TABLE 2. Cﬂ!llpalisnll of pm‘pusled method with FI:N.-BE combined with MGAC [25] 8703  92.79 03,59 07.81 96.18
post-processing and a combination of fully convolutional neural network FCN (5] 82.50  00.46 95.35 94.09 94,44
and textons on CVC-ColonDB dataset [46]. U-Net [8] 21.63 80.88 86.68 07.63 R6.68
SegNet [16] 84.03  91.32 91.57 96.57 95.19
FrCN [49 84.13  91.38 94.48 95.46 95.20
Networks Accuracy  Specificity Dice Sensitivity MSCFLIH zll ?ﬁ.ﬁg 85.52 85.78 06.33 03.86
Zhang etal. [19]  0.975 0988  0.701 0.757 D‘“’é{‘ﬁﬁ! 2;{'12 g‘j-z? 3;*;": g:g 322'
Akbarietal. [6] 0977 0.993 0810 0748 PSL51] - 8605 92.26 ' 2.5 ol
Tong et al. [48] 0.0 75.0 - - -
Proposed 0.980 0.991 0.896 0.792 DermoNet [26] 853 915 -
Proposed 88.78  94.10 96.23 97.84 95.40




EXPERIMENTAL RESULTS
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FIGURE 8. Comparison of proposed method with [6]. a) Input images.
b) Ground truth. c) FCN-8S with Otsu threshold. d) FCN-8S final result.

e) Proposed method.
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FIGURE 9. Comparison of proposed method on CHAOS dataset [57].
a) Input images. b) Ground truth. c) U-net [8]. d) Deeplab V3+ [11].
e) Proposed method.
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FUTURE WORKS

* incremental boosting convolution networks by adopting other novel effective
methods such as using the advantages of a neural architecture search (NAS)

algorithm that can support the network:
* allowing it to focus on searching the repeatable cell structure, while hand designing the outer
network structure that controls the spatial resolution changes.
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