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MOTIVATIONS

* Biological motivations:

* Drug discovery is a high-cost low-efficient process.
* Compound-protein interaction (CPI) plays an essential role in drug discovery.
Understanding drug-target binding affinity makes it possible to identify candidate drug.

e Technical motivations:

The constraints of previous studies reside in the utilization of plaintext to portray protein sequences.

Most of prior works use the information regardless to the 3D information from compounds.

Prior approaches have typically relied on preexisting datasets to tackle the task at hand.

K-folds splitting method impedes the model’s capacity when confronted with substantially disparate test sets.

— Binding affinity (Bind?
—' Not bind?)
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CONTRIBUTIONS

We propose that the MulinforCPI DL model, which utilizes multi-level information from
compounds and proteins, can address significant challenges in CPI prediction tasks.

In contrast to prior research where most end-to-end models used sequences of amino acid
characters to conduct protein representations, our approach involved leveraging both
atomic-level attributes and 3D information extracted from proteins to augment the model’s
capacity.

The developed transfer learning technique leverages the extensive Quantum-Mechanical
Properties of Drug-like Molecules (QMugs) dataset and employs it for fine-tuning of CPI
datasets.

Our separation strategy enables the model to closely approximate the actual problem when
faced with unfamiliar test sets.

Our research reveals the gap between first-principle methods and data-driven approaches.
We believe these findings open up opportunities for future research on CPI prediction tasks.
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Pretraining phase

* It is unachievable to procure 3D configurations in all practical
scenarios.

* To tackle this issue, we follow the suggestion of training strategy
proposed by 3Dinfomax.

* 3D molecular dataset QMugs (Quantum Mechanical
Properties of Drug-like Molecules) [REF] is used for the pre-
training purpose, resulting in GNN 3D geometry information
aware.

* By minimizing the contrastive learning loss LNT-Xent
(normalized temperature-scaled cross entropy loss)

[REF] Isert, Clemens, et al. "QMugs, quantum mechanical properties of drug-like molecules.” Scientific Data 9.1 (2022): 273.

Table 1 Descriptive statistics of QMugs dataset.

Unique Total Heavy atoms
Dataset :

compounds conformations max (mean)
QMugs 665,911 1,992,984 100 (30.6)

a) Pretraining phase
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METHODS

Fine-tuning phase

* Compound work

First, we have access to GNNs that can
effectively tackle the question of “what” to
learn from the molecular graphical structure.

Second, to augment the model’s capacity to
incorporate the global information of the
molecular structure, we employ Morgan
fingerprints (MFs).

* Protein work

First, we extract residue-residue Euclidean
distance information obtained from the
interatomic alpha carbon (a-carbon or Ca)
coordinates.

Second, we utilize the information that discloses

atomic properties, including the specific type of
atom in a given residue).

b) Protein Encoding
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c) Fine-tuning phase
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[REF] Stérk, Hannes, et al. "3d infomax improves gnns for molecular property prediction." International Conference on Machine Learning. PMLR, 2022.
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Our study involves 6 benchmark datasets.
For 2 tasks:
Regression :
Davis, KIBA, Metz, CASF2016
Classification:

BindingDB, DUD_E Diverse subset

Kernel ]
Density |
Estimate ¢

Gaussian ‘ 1
Distribution £,

a) Davis b) KIBA ¢) Metz ¢) CASF-2016

Fig. 1 The label distribution of four regression datasets. a) KIBA dataset, b) Davis dataset,
c) Metz dataset and d) CASF-2016 dataset.

Table 2 Statistics of the benchmark datasets.

- . Interactions Density
Dataset lask Proteins Dirugs Negatives  Positives (%)
Davis Regression 442 65 30,056 1000
KIGA Regression 229 2,068 117,657 24,84
Medas Regression 170 1,423 35,259 14,57
CASF2016 Regression 15 a7 a7 6.6
DUD_IE Diverse  Classification T 108,212 107,590 1,759 14,43
BindingDI3 Classification 513 49,752 27,493 FRTTT 0,15




EXPERIMENTAL SETTINGS

Novel pair (Davis): There were no overlaps between the training and test
datasets. Neither the training compound nor the training protein appeared
in the test set.

Novel compound (Davis): There were no intersections of compounds in the
training set and compounds in the test set.

Novel protein (Davis): There were no intersections of proteins in the training
set and proteins in the test set.

Cross-domain (Metz, CASF-2016): We removed interactions involving 56
proteins and 105 compounds with similarities higher than 0.3 from the Metz
dataset.

e Cluster1
e Cluster 2
e Cluster 3

Cluster 4
e Cluster5

A) Compound clusters
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B) Protein clusters

Demonstration of cluster cross-validation for DAVIS dataset by
principal component analysis. (A) compound clusters and (B)

protein clusters
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All of these models exhibited notably low Spearman

correlation values:
A low Spearman correlation value suggests that these models fail to
capture features from training dataset and may not offer a reliable fit.

The MulinforCPl model shows robustness in its ability to learn from training

datasets, consistently achieving the highest Spearman correlation and CI

values across the majority of experiments.

Table 4: Result for novel-comp in Davis dataset (MSE | better, CI

1 better, Spearman Correlation 1 better, mean and standard
deviation values were computed from 5-fold results’ averages).

Table 3: Restult for novel-pair in Davis dataset (MSE | better, CI
1 better, Spearman Correlation 4 better, mean and standard
deviation values were computed from 5-fold results’ averages).

Models MSE CI Spearman
Correlation
DeepDTA 0.719(+0.312) 0.456(+0.107) —0.054(+0.162)
DeepConvDTI 0.602(+0.221)  0.580(+0.065)  0.141(+0.105)
TransformerCPI 0.565(+0.252) 0.552(+0.024) 0.087(+0.037)
GraphDTA (GINSs) 1.078(+£0.564)  0.499(+0.100)  0.011(+0.139)
HyperattentionDTI ~ 0.633(0.249)  0.529(+0.046)  0.049(+0.078)
PerceiverCPI 0.668(+0.357) 0.547(+0.071) 0.062(+0.124)
MulinforCPI (ours)  0.547(+0.256)  0.646(+0.05)  0.237(+0.061)
MulinforCPI (ours)  0.580(+0.258)  0.528(+0.073  0.055(0.093)

Freeze 95%

Table 5: Result for novel-prot in Davis dataset (MSE | better, CI ¢
better, Spearman Correlation 4 better, mean and standard
deviation values were computed from 5-fold results’ averages).

Models MSE CI Spearman Models MSE CI Spearman
correlation correlation
DeepDTA 0.873(£0.274)  0.549(+0.036)  0.086(+0.068)  DeepDTA 0.529(+0.130)  0.729(+0.014)  0.396(+0.031)
DeepConvDTI 0.750(£0.275)  0.674(£0.048)  0.312(+0.075)  DeepConvDTI 0.465(+0.151)  0.755(+0.062)  0.433(+0.094)
TransformerCPI 0.831(+0.244)  0.615(+0.039)  0.205(+0.051)  TransformerCPI 0.487(+0.172)  0.660(+0.040)  0.278(+0.066)
GraphDTA (GINs) 0.750(+£0.283)  0.688(+0.05) 0.333(+0.062)  GraphDTA (GINs) 1.122(+0.887)  0.694(+0.051)  0.333(+0.088)
HyperattentionDTI ~ 0.757(+0.269)  0.589(+0.057)  0.157(+0.104)  HyperattentionDTI ~ 0.542(+0.219)  0.707(+0.040)  0.352(+0.044)
PerceiverCPI 0.746(+0.245)  0.669(+0.036)  0.303(+0.054)  PerceiverCPI 0.513(£0.213)  0.748(+0.022)  0.427(+0.033)
MulinforCPI (ours) ~ 0.690(+0.275)  0.679(+0.072)  0.317(+0.113)  MulinforCPI (ours)  0.488(+0.138)  0.756(+0.017)  0.439(+0.022)

MulinforCPI (ours)
Freeze 95%

0.679(+0.219)

0.688(+0.028)

0.290(:0.084)

MulinforCPI (ours)

Freeze 95%

0.478(:0.140)

0.753(0.020)

0.435(+0.027)
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Figure 1: The scatter plot for the third fold in novel pair setting.
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EXPERIMENTAL RESULTS

Result for Cross-domain

* This experiment:

Train with Metz dataset.

Test with 57 interactions from CAFS-2016.

(Interactions involving 56 proteins and 105 compounds with similarities higher than 0.3 were removed from training dataset.)
* The performance of end-to-end models is increased when we low down the hard of threshold.

a) DeepDTA b) DeepConvDTI c) TransformerCPI m Autodock-GPU
R h L * rd ] v
Table 6: The results cross-domain experiments when similarity - C R - A " o o L
threshold = 0.3 (MSE | better, CI 1 better, Spearman Correlation 2 2* ’ e P e L T Ay
T better) . g ': "’{' g:/ iy g:/ - 5‘ % 2 /
Model MSE cI Spearman B ; . S B p % R
correlation PP S R R AL S| o L
True Labels True Labels True Labels U2l ‘ N nTme Cabelsw b
DeepDTA 6.193 0.542 0.135 d) GraphDTA e) HyperAttentionDTI f) PerceiverCPI 3 Autodock-Vina
DeepConvDTI 6.611 0.562 0.176 A i L @ A
TransformerCPI 4,999 0.6 0.298 Nl m: e A > 7 A o
GraphDTA (GINs) 6.676 0.512 0.02 87l £ A 37" o gl A .
HyperattentionDTI 5.484 0.606 0.314 L7 . 2L i . ©n % -
PerceiverCPl 5.279 0.615 0.342 L2 e B B o =
MU]infOl’Cp[ EOUrS} 4.698 0.602 0.297 ’ : )'crrue L’;bels : B ” ’ N "True I:abe\sw B . ’ ¢ }'urrue L:hels : - ! g ' : AfFl’ue L‘:abels : : "
MulinforCPI (ours) 4.391 0.642 0.395 g) MulinforCPI (ours) h) MulinforCPI frezze95 (ours) @ Glide
Freeze 95% ) L 7 ) i g £ —
=1 s =1 = v A
wl S T & c e
Autodock-GPU N/A 0.717 0.620 g ) g” . <3} @ <L
Autodock-Vina N/A 0711 0.608 T £ 7 A E g o
Glide N/A 0.722 0.614 S e S A © L '
: ~ ) 7,4"' : L B I 2
' : )frrue Ij;bels - : : ' ) 2cTrue L‘;bels ; ) " 8 T nT,.ue L‘:abels “ - ”
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The performance of data-driven method has not
reached to the level of strong docking simulations
such as Glide and Gold.

Table 7: The enrichment factor analysis results on a Diverse
subset from the DUD-E database (EF, 1 better, BEDROC,_go 51
better, mean and standard deviation values were computed
from per protein results’ averages).

Models EF s, (£std) BEDROC, g0 5
(std)

DeepConvDTI 6.357(+6.173) 0.118(+0.109)
TransformerCPI 7.039(+12.496) 0.117(+0.192)
HyperattentionDTI 1.753(£2.551) 0.038(+0.051)
PerceiverCPI 4.649(+3.136) 0.094(+0.067)
MulinforCPI (ours) 7.886(+10.642) 0.137(+0.167)
MulinforCPI (ours) 4.248(+5.787) 0.078(+0.095)
Freeze 95%

Random Guessing 0.940(+0.844) 0.022(+0.010)

Gold
Glide
Surflex
FlexX
Blaster

N/A
N/A
N/A
N/A
13.571(+12.908)

0.253(0.182)
0.259(+0.171)
0.119(£0.093)
0.104(0.060)
N/A

13
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FUTURE WORKS

Based on the data obtained from ESMFold, MulinforCPI requires a substantial
amount of memory for preprocessing before proceeding to GPU training.

Enhancing the input while maintaining optimal performance can accelerate the
training process.

The interpretability of our DL network is constrained by the dimensionality
reduction of the CNNs and the MLP layers. Addressing these significant
characteristics will form an integral part of future endeavors.

Leveraging equivariant networks, such as E(n) Equivariant GNNs and Euclidean
Neural Networks, to incorporate positional information (rotation, translation,

inversion) has the potential to enhance the model’s capacity to capture more
informative patterns.

14
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