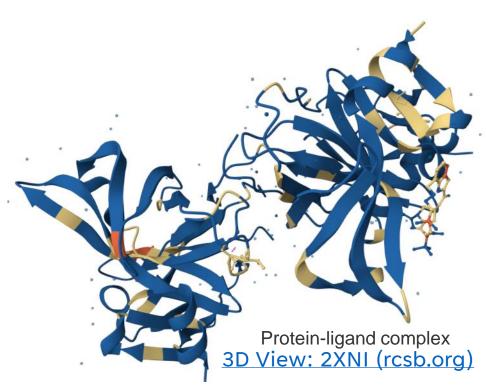


Perceiver CPI: a nested cross-attention network for compound-protein interaction prediction

Ngoc-Quang Nguyen, Gwanghoon Jang, Hajung Kim, Jaewoo Kang



Supervisor: Jaewoo Kang First-author: Ngoc-Quang Nguyen

CONTENTS

- Motivations
- Contributions
- Methods
 - Compound information encoding
 - Protein information encoding
 - Information integration
- Experiments and results
- Future works
- Q&A

KOREA UNIVERSITY

Data Mining & Information Systems

ମ୍ ମୁହ୍ଚି DN

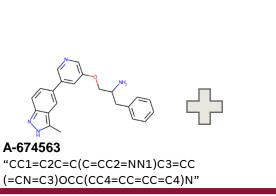
MOTIVATIONS

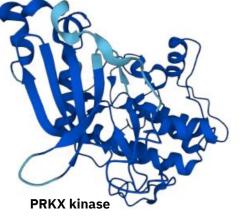
• Biological motivations:

- Drug discovery is a high-cost low-efficient process.
- Compound-protein interaction (CPI) plays an essential role in drug discovery.
- Understanding drug-target binding affinity makes it possible to identify candidate drug.

• Technical motivations:

- Extended-connectivity fingerprints (ECFPs) are informative, yet simple.
- GNNs must always learn a meaningful chemical space embedding from scratch.
- Integration of the compound network's and protein network's representation is often performed by a simple concatenation.





Binding affinity (Bind? Not bind?)

ମ୍<u>ୟୁ</u> କୁ

KOREA

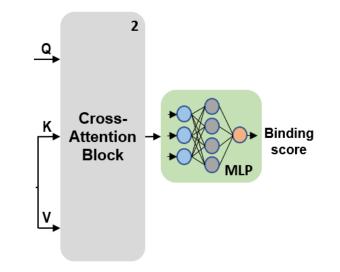
JNIVERSIT

CONTRIBUTIONS

- We propose novel method to enrich the representation of compounds by combining the information from both ECFPs and graph information.
 - $(1 \ 0 \ 1 \ \dots \ 0 \ 1) \rightarrow ECFP$

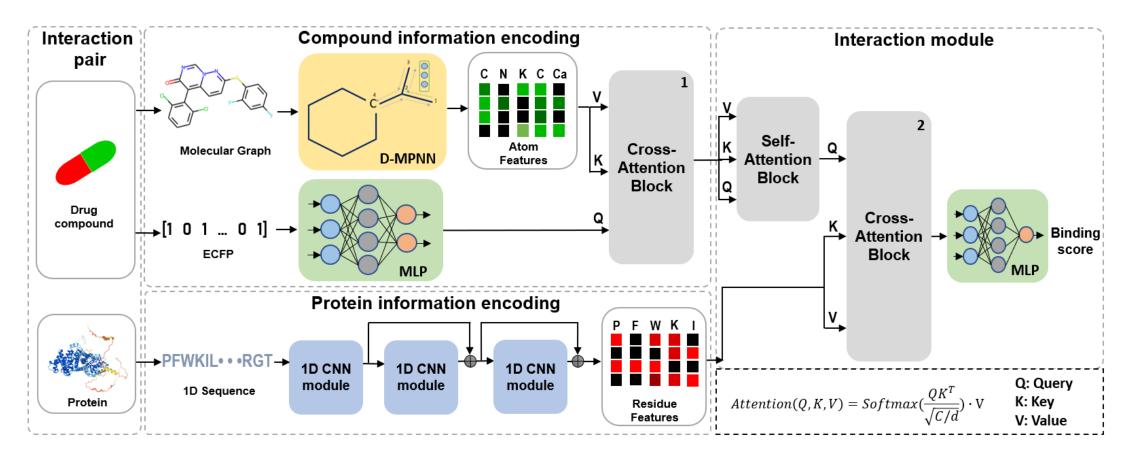
• The first approach to use nested crossattention for capturing the relations between protein and molecule representations.

ર્શ્વ 🖗 DN



KOREA

Perceiver CPI network



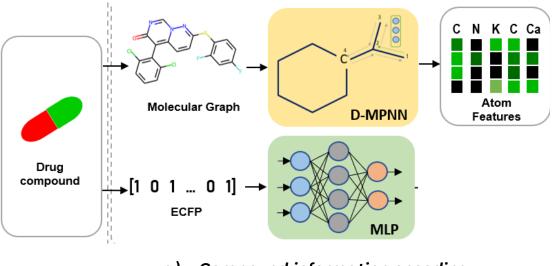
KOREA UNIVERSITY

Data Mining & Information Systems Laboratory

ର୍ଶ୍ୱ 🎘 DMIS

Compound information encoding

- We represent a molecule s using two forms:
 - 1. A molecular graph, which represents the interactions between a set of atoms by a set of bonds.
 - 2. A Morgan/circular fingerprint vector as a binary vector.



a) Compound information encoding

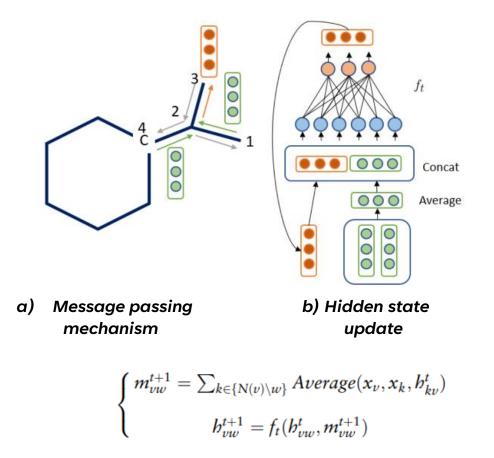
KOREA UNIVERSITY

Data Mining &

nation Systems

Compound information encoding Directed Message-Passing Neural Network (D-MPNN)

- D-MPNN operates on hidden states and messages associated with directed edges (bonds) instead of messages associated with vertices (atoms).
- The main idea of the directed message-passing technique is to prevent the distortion of messages between atoms.



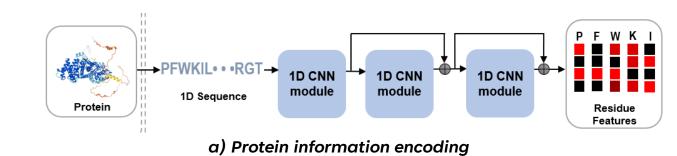
Sa D

c) message-passing update equations

KOREA

Protein information encoding (1DCNN)

- First, Tasks Assessing Protein Embeddings (TAPE) tokenizer was used to number protein characters.
- The input is zero-padded and then propagated into the blocks of 1DCNNs.
- The output of the 1D convolution block can be expressed as the **Alg. 1.**



```
Algorithm 1 An algorithm for residual block of 1DCNN

Require: M, emb_{in} \leftarrow Conv1D(emb_0), \lambda

Result: Prot_t \leftarrow emb_{out}

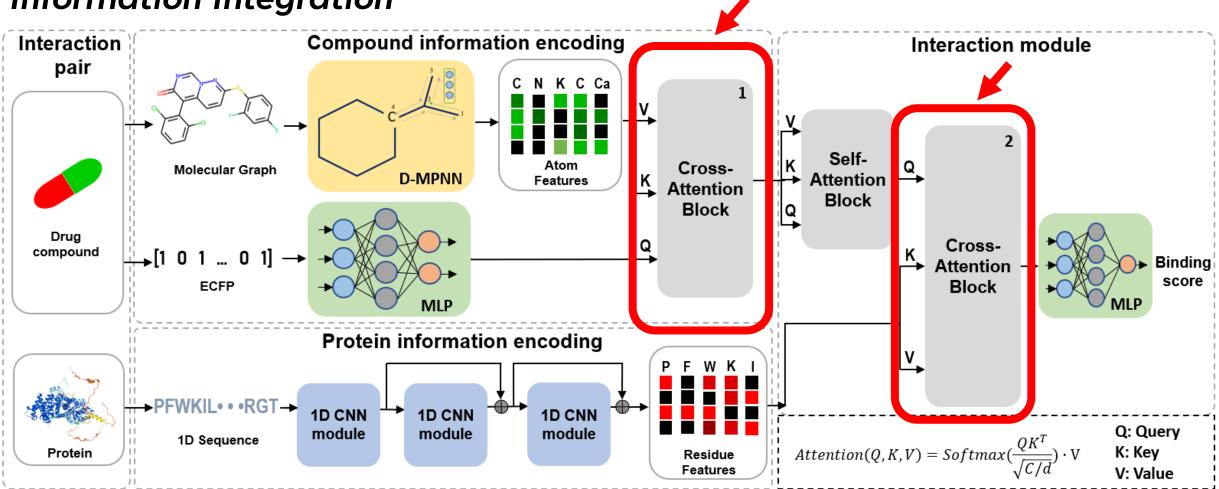
for M do

emb_{out} \leftarrow LN (Conv1D(emb_{in}) + emb_{in} * \lambda);

emb_{in} \leftarrow GLU(emb_{out});

end for
```

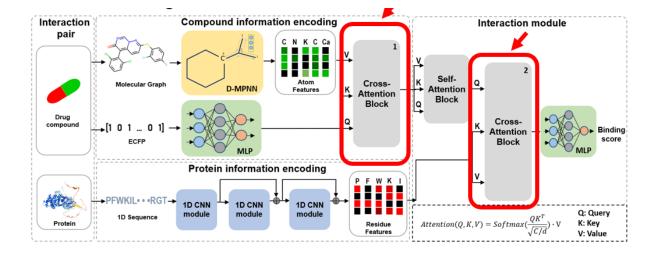
KOREA



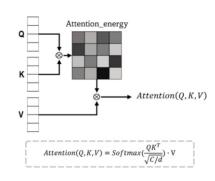
Information Integration

Information Integration

- In the compound Information encoding module, we intend to take information from the EFCP to enrich the representation of compound network.
- In the interaction module, we try to capture the information which shows how the protein information affected by the compound information.



A DM



a) Cross-attention block

KOREA

EXPERIMENTS AND RESULTS

Experimental procedure

- Novel pair (Davis, KIBA and Metz): There were no overlaps between the training and test datasets.
- Novel-hard pair (Davis): There were no overlaps between the training and test datasets.
- Novel compound (Davis): There were no intersections of compounds in the training set and compounds in the test set.
- Novel protein (Davis): There were no intersections of proteins in the training set and proteins in the test set.
- Cross-domain experiment (Davis and PDBbind): There were no overlaps between the training and test datasets.
- Enrichment factor analysis [GPCR, GPCR subset (DUD-E dataset), Diverse subset (DUD-E dataset)]: There were no overlaps between the training and test datasets (the duplicated target 'CXCR4' was removed from the Diverse subset).

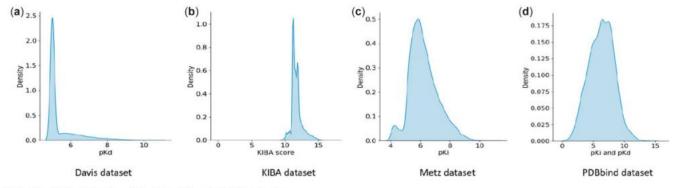


Fig. 2. Visualization of benchmark datasets with kernel density estimation

Table 1. Statistics of the benchmark datasets

Dataset	Proteins	Drugs	Interactions	Density (%)
Davis (Davis <i>et al.</i> , 2011)	442	68	30 056	100
KIBA (Tang <i>et al.</i> , 2014)	229	2068	117 657	24.84
Metz (Metz et al., 2011)	170	1423	35 259	14.57
PDBbind (Wang et al., 2005)	2079	5535	6989	0.06

Table 2. Statistic of GPCR dataset

ୁ ଶିଛ DMIS

Proteins	Compounds	Positive pairs	Negative pairs	Density (%)	
356	5359 7989		7354	0.8	

 Table 3. Statistics of GPCR and diverse subsets from DUD-E database

Subset	Number of target	Actives	Decoys	
GPCR subset	5	1480	99 856	
Diverse subset	7	1759	107 591	

KOREA

UNIVERSITY

Data Mining &

Information Systems

EXPERIMENT AND RESULTS

Table 4. Comparison of the proposed method with SOTA model in terms of three settings from the Davis dataset with 5-fold cross-validation

Model	Novel pair		Novel co	ompound	Novel protein	
	MSE CI MSE CI		CI	MSE	CI	
DeepDTA (Öztürk et al., 2018)	0.631(±0.059)	0.533(±0.027)	0.482(±0.034)	0.613(±0.029)	0.701(±0.045)	0.759(±0.015)
DeepConvDTI (Lee et al., 2019)	0.598(±0.057)	0.546(±0.043)	$0.512(\pm 0.046)$	$0.681(\pm 0.012)$	0.789(±0.109)	$0.714(\pm 0.034)$
TransformerCPI (Chen et al., 2020)	$0.549(\pm 0.038)$	$0.490(\pm 0.032)$	$0.522(\pm 0.027)$	$0.592(\pm 0.026)$	$0.708(\pm 0.032)$	$0.676(\pm 0.005)$
GraphDTA (GINs) (Nguyen et al., 2021)	$0.846(\pm 0.058)$	0.459(±0.032)	$0.452(\pm 0.051)$	$0.670(\pm 0.018)$	0.970(±0.061)	$0.660(\pm 0.016)$
HyperattentionDTI (Zhao et al., 2022)	$0.671(\pm 0.045)$	0.517(±0.013)	$0.506(\pm 0.015)$	$0.578(\pm 0.019)$	$0.784(\pm 0.063)$	$0.674(\pm 0.020)$
Perceiver CPI (ours)	0.463(±0.013)	0.638(±0.028)	0.378(±0.010)	0.726(±0.017)	0.667(±0.018)	0.758(±0.010)

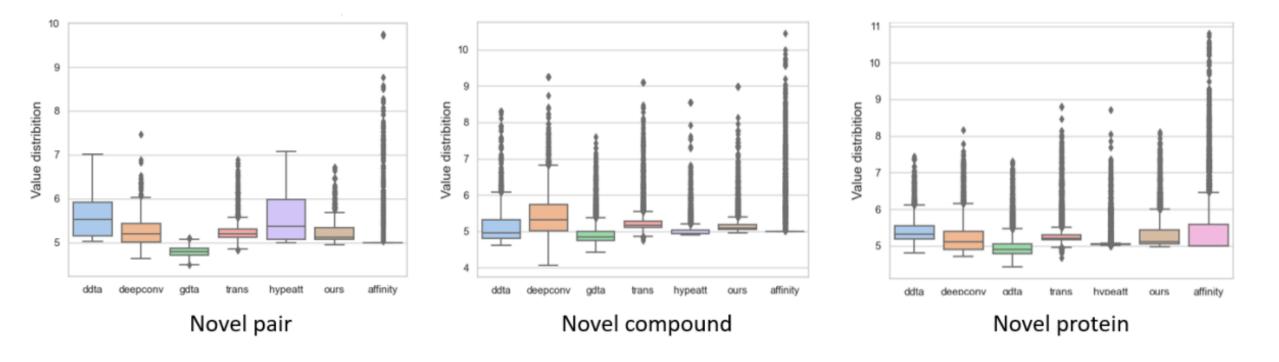
Table 8. Enrichment factor analysis results for subsets in the DUD-E database (UP: $EF_{1\%}$, DOWN: $BEDROC_{\alpha=80.5}$)

Family	Deep ConvDTI	Transformer CPI	Hyperattention DTI	Perceiver CPI (ours)	Gold	Glide	Surflex	FlexX	Blaster
GPCR (DUD-E)	9.728(±11.534)	0.814(±1.178)	3.982(±3.119)	16.366(±15.921)	N/a	N/a	N/a	N/a	11.8(±8.136)
(DUD-E)	0.152(±0.174)	$0.018(\pm 0.040)$	$0.071(\pm 0.058)$	0.236(±0.177)	0.282(±0.154)	0.198(±0.205)	0.284(±0.098)	$0.156(\pm 0.135)$	N/a
Diverse	0.292(±0.774)	0.922(±0.819)	1.075(0.876)	1.88(±1.297)	N/a	N/a	N/a	N/a	13.571(±12.908)
(DUD-E)	$0.005(\pm 0.015)$	0.021(0.016)	0.023(±0.018)	$0.031(\pm 0.022)$	$0.295(\pm 0.180)$	$0.258(\pm 0.170)$	$0.118(\pm 0.093)$	$0.104(\pm 0.059)$	N/a

KOREA UNIVERSITY

ब्रह DMIS EXPERIMENT AND RESULTS

- The visualization of prediction for first folds of each setting from the Davis dataset.
- Here, we confirmed that the prediction distribution of Perceiver CPI is closely mimic to the distribution from the label.



KOREA

FUTURE WORKS

- Finding and extracting meaningful features from proteins remains a difficult but worthwhile task.
- Utilizing information from 3D structures produced from compounds.
- Adopting the transfer learning method for individual neural networks (compound and protein networks).
- The interpretability of Perceiver CPI might help addressing useful features which would form a valuable part of future work.

THANK YOU FOR YOUR ATTENTION

